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Abstract 

Working memory resources are needed for processing and maintenance of information during 

cognitive tasks. Many models have been developed to capture the effects of limited working 

memory resources on performance. However, most of these models do not account for the finding 

that different individuals show different sensitivities to working memory demands, and none of 

the models predicts individual subjects' patterns of performance. We propose a computational 

model that accounts for differences in working memory capacity in terms of a quantity called 

source activation, which is used to maintain goal-relevant information in an available state. We 

apply this model to capture the working memory effects of individual subjects at a fine level of 

detail in three experiments. In Experiment's 1 and 2 we demonstrate that our model can predict 

the performance of individual subjects in two variations of a modified digit span (MODS) task. In 

Experiment 3 we show that an individual's source activation, as estimated from performance of 

the MODS task, can be used to predict performance of a second working memory task. This, we 

argue, strengthens the interpretation of source activation as working memory capacity. 
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Modeling Individual Differences in Working Memory Performance: 

A Source Activation Account in ACT-R 

Working memory provides the resources needed to retrieve and maintain information 

during cognitive processing (Baddeley, 1986,1990; Miyake & Shah, 1999). For example, during 

mental arithmetic one must hold the original problem and any intermediate results in memory 

while working toward the final answer. Working memory resources have been implicated in the 

performance of such diverse tasks as verbal reasoning (Baddeley & Hitch, 1974), prose 

comprehension (Baddeley & Hitch, 1974), sentence processing (Just & Carpenter, 1992), 

memory span (Baddeley, Thompson, & Buchanan, 1975), free recall learning (Baddeley & Hitch, 

1977), and prospective memory (Marsh & Hicks, 1998). Given its ubiquitous influence, the study 

of working memory is critical to understanding how people perform cognitive tasks. 

Working memory resources are limited, and these limits govern performance on tasks 

that require those resources. Prior research has demonstrated that as the working memory 

demands of a task increase, people's performance on the task decreases (e.g., Anderson & 

Jeffries, 1985; Anderson, Reder, & Lebiere, 1996; Baddeley & Hitch, 1974; Engle, 1994; Just & 

Carpenter, 1992; Salthouse, 1992). Salthouse, for instance, had subjects perform four different 

tasks at 3 levels of complexity. He found that as task complexity increased, performance 

decreased. Moreover, this decrease was greater for older adults. This last finding, that people 

differ in their sensitivity to the working memory demands of a task, is an important feature of 

working memory results: some individuals are less affected by increases in working memory 

demands than others. Just and Carpenter (1992), for example, demonstrated that differences in 

working memory capacity account for differential sensitivity to working memory load during 

several language comprehension tasks. Further, Engle (1994) reported that differences in working 

memory capacity predict performance on a variety of tasks including reading, following 

directions, learning vocabulary and spelling, notetaking, and writing. Working memory resources, 
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it seems, (a) are drawn upon in the performance of cognitive tasks, (b) are inherently limited, and 

(c) differ across individuals. 

Several computational models of working memory have been proposed. Each makes very 

different assumptions about the structure of working memory and the nature of working memory 

limitations. Broadly speaking, the models are of two types: connectionist networks and 

production systems. Burgess and Hitch (1992) developed a connectionist model of Baddeley's 

(1986, 1990) articulatory loop, a component of working memory hypothesized to hold verbal 

stimuli for a limited amount of time. In their model, item-item and item-context associations are 

learned via connection weights that propagate activation between memory items and enable 

sequential rehearsal through a list. Because these weights decay with time, more demanding tasks 

(e.g., remembering longer lists or lists of longer words) tend to propagate less activation to the 

memory items, leading to more errors. Page and Norris (1998a; 1998b) have also developed a 

connectionist model of the articulatory loop. Their model, which uses a localist representation of 

the list items, focuses on the activation of the nodes representing the list items; the strength of 

activation for successive list items decreases as a function of list position creating what Page and 

Norris term a primacy gradient. Activation is assumed to decay during the input process if 

rehearsal is prevented and during output. Recall is achieved by a noisy choice of the most active 

item; this item is then suppressed to prevent its retrieval on successive recall attempts. In contrast, 

O'Reilly, Braver, & Cohen (1999) have proposed a biologically inspired, connectionist model in 

which working memory functions are distributed across several brain systems. In particular, their 

model relies on the interaction between a prefrontal cortex system, which maintains information 

about the current context by recurrently activating the relevant items, and a hippocampal system, 

which rapidly learns arbitrary associations (e.g., to represent stimulus ensembles). Both systems' 

excitatory activation processes, however, are countered by inhibition and interference processes 

such that only a limited number of items can be simultaneously maintained. This limitation leads 

to decreased performance in complex tasks. Similarly, Schneider's CAP2 (Schneider, 1999) 



Working Memory      6 

model also assumes that working memory functions are distributed across multiple systems. In 

CAP2, memory and processing occur in a system of modular processors arranged in a 

multilayered hierarchy. A single executive module regulates the activity of the system. Working 

memory limits arise due to cross-talk in the communication between modules, storage limitations 

in specific regions of the system, and severe limits on the executive module. 

Another approach to working memory is taken by production-system architectures. One 

such architecture is EPIC (Kieras, Meyer, Mueller, & Seymour, 1999; Meyer & Kieras, 1997a, 

1997b). Here, an articulatory loop is implemented via the combined performance of an auditory 

store, a vocal motor processor, a production-rule interpreter, and various other information stores. 

Performance of the model is governed by production rules which implement strategies for 

rehearsal and recall and which, in turn, draw on the capabilities of the other components. 

Working memory limitations stem from the all-or-none decay of items from the auditory store 

(with time until decay being a stochastic function of the similarity among items) and from the 

articulation rate attributed to the vocal motor processor. As the vocal motor processor takes the 

prescribed amount of time to rehearse a given item (re-adding that item to the auditory store), 

other items have a chance to decay (disappearing from the auditory store), thereby producing 

subsequent recall errors. In contrast, SOAR (Newell, 1990; Young & Lewis, 1999) proposes that 

working memory functions are distributed across its long-term production memory, which stores 

permanent knowledge, and its dynamic memory, which stores information relevant to the current 

task. Unlike many other models of working memory, SOAR assumes no limit on its dynamic 

memory (the component most commonly identified with working memory). Limitations in SOAR 

are primarily due to functional constraints; the assumption is that individuals differ in terms of 

past experience and, therefore, they also differ in terms of the acquired knowledge that can be 

drawn upon to perform a task. Young and Lewis also suggest that SOAR's dynamic memory may 

only be able to hold two items with the same type of coding (e.g., phonological, syntactic). This 
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constraint allows SOAR to capture some limitations (e.g., similarity-based interference) not 

possible with functional constraints alone. 

An important advantage common to these computational approaches is that each presents 

a theory of working memory in a rigorous enough form to enable quantitative comparisons with 

human data. Indeed, despite the wide variety of approaches, all of these models have successfully 

accounted for assorted working memory effects at the group level (i.e., aggregated across 

subjects). As noted above, however, working memory capacity differs from person to person, and 

these differences can result in very different patterns of performance. Thus, a complete model of 

working memory should be able to capture not only aggregate working memory effects but also 

individual subjects' different sensitivities to working memory demands. Just and Carpenter 

(1992) modeled different patterns of performance in groups of subjects with low, medium, or 

high capacity by assuming different caps on the total amount of activation in the system. This was 

an important step in the computational modeling of individual differences in working memory 

capacity. 

We build upon this approach and explore a fully individualized computational modeling 

account of working memory capacity differences that shares some similarities with other 

activation accounts of working memory (e.g., Burgess & Hitch, 1992; Just & Carpenter, 1992; 

Page & Norris, 1998a, 1998b; O'Reilly et al, 1999). Our main goal is to show that a single 

model—with an adjustable individual differences component—can capture the performance of 

individual subjects and that the model can predict subjects' performance across different working 

memory tasks. Several new features distinguish our approach. First, we are modeling 

performance at the individual subject level. This is necessary if one wants to show that a model is 

able to capture individuals' actual patterns of performance and not just a mixture of several 

individuals' differing patterns. Thus, our approach is qualitatively different from aggregate or 

subgroup analyses, which suffer in varying degrees from the perils of averaging over subjects (cf. 

Siegler 1987). Second, we attempt to capture individual subjects' performance at a detailed level, 
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modeling several performance measures collected under varying task demands. Third, we collect 

data within a paradigm where we try to reduce the impact of other differences between subjects 

such as prior knowledge, strategic approaches, and self-pacing of activities. In this way, the 

observed variations in performance are more likely attributable to differences between subjects in 

their cognitive processing resources, e.g., working memory resources. Fourth, we develop our 

individual-differences model of working memory within an existing cognitive architecture, ACT- 

R (Anderson & Lebiere, 1998). This architecture offers both a set of basic mechanisms which 

constrain how working memory can be modeled and a set of prior results suggesting that these 

mechanisms provide an adequate account of people's cognitive processing across a variety of 

tasks. More specifically, a variant of the working memory model we explore in this paper has 

already been tested in its ability to simulate aggregate performance in a different working- 

memory-demanding task (Anderson et al., 1996). Thus, the current paper focuses not on how the 

model accounts for various working memory effects per se but rather on how this single model of 

working memory can capture the variation among subjects in their working memory 

performance, while maintaining its basic structure. 

Modeling Working Memory in ACT-R 

ACT-R combines a procedural and declarative memory in a single framework capable of 

modeling a wide variety of cognitive tasks. Procedural knowledge in ACT-R is represented as a 

set of independent productions, where each production is of the form "IF <condition>, THEN 

<action>." The firing of productions is governed by the current goal, which acts as a filter to 

select only those productions relevant to the current task. Among the relevant productions, only 

the one deemed most useful is fired. Declarative knowledge, in contrast, is represented as a 

network of interconnected nodes or chunks. Each node has an activation level that governs its 

accessibility: the higher a node's activation, the more likely and more quickly it is accessed. Node 

activation is increased when a node is accessed and decreases as time passes without further 

stimulation. This kind of activation is called base-level activation and it reflects practice and 
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forgetting effects. The activation of a node is also increased if it is relevant to the current goal, a 

special declarative node that represents the person's focus of attention. There is a certain amount 

of activation called source activation that flows from the current goal to related nodes to maintain 

them in a more active state relative to the rest of declarative memory. Only one goal is active at 

any given time; if a subgoal is set, it becomes the new current goal and hence the focus of 

attention. 

Take the example of a person whose current goal is to find the sum of 3 and 4. In this 

case, 3 and 4 are items in the focus of attention and source activation flows from these nodes to 

other related nodes in declarative memory. This makes those related nodes more active relative to 

the rest of declarative memory, making them more likely to be retrieved. Because the node 

encoding the fact that 3+4=7 is related to both 3 and 4, it will receive source activation from both 

items in the focus of attention, leading it to be most likely to be retrieved. Thus, source activation 

plays the role of producing context effects: the fact 3+4=7 is more activated when 3 and 4 are in 

the focus of attention. If the task being performed is complex (e.g., many pieces of information 

are relevant to the goal), the source activation must be spread thinly, and each relevant node will 

receive less source activation. This makes the relevant information less distinct and less easily 

accessed. As a result, performance suffers. 

Cantor and Engle (1993) suggested that working memory limits could be modeled in 

ACT* (an ACT-R predecessor) as a limit on the number of items that could be maintained in an 

active state relative to the rest of declarative memory. This is precisely the function of source 

activation in ACT-R: it increases, to a limited degree, the activation of context-related items. 

Anderson et al. (1996) formally implemented and tested this conceptualization of working 

memory with a working ACT-R simulation. In their study, subjects were required to hold a digit 

span for later recall while solving an algebraic equation. Both the size of the span and the 

complexity of the equations were manipulated. Also, in some cases, digits from the memory span 

had to be substituted for symbols in the equation. Results showed that, as either of the subtasks 

in 
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became more difficult, performance on both decreased. In particular, for both the accuracy and 

latency of equation solving, the effects of span size were greater when subjects had to perform a 

substitution. 

In the Anderson et al. (1996) model, a fixed amount of source activation was shared 

between the two components of their task—maintaining the items of the memory span and 

solving the equations. As either of the subtasks became more complex, source activation was 

more thinly spread among a greater number of relevant nodes, decreasing performance. 

Quantitative predictions of the model provided a good fit to many performance measures (e.g., 

accuracy on both subtasks and latency on problem solving) across two experiments. Thus, an 

ACT-R model with a limit on source activation reproduced two of the three key features of 

working memory resources: (a) they are drawn upon in the performance of cognitive tasks, and 

(b) they are inherently limited. The third feature, that working memory resources differ in amount 

across individuals, was not addressed. To account for the third feature, Lovett, Reder, and Lebiere 

(1999) hypothesized that the limit on source activation may differ among individuals and that this 

difference accounts for individual differences in working memory capacity. According to this 

view, a larger working memory capacity is represented by a larger amount of source activation 

which, in turn, can activate more goal-relevant information, thereby facilitating performance. 

Modeling Individual Differences in ACT-R 

To describe how working memory differences can be incorporated in ACT-R, it is helpful 

to have a more detailed, quantitative specification of the theory. As previously described, the 

ACT-R architecture (Anderson & Lebiere, 1998) is a production system that acts on a declarative 

memory. The knowledge in declarative memory is represented as schema-like structures called 

chunks. A single chunk consists of a node of a particular type and some number of slots that 

encode the chunk's contents. Figure 1, for instance, depicts a chunk that encodes a memory of the 

digit 7 appearing in the first position of a list presented on the current trial. This chunk has three 

slots: one to store the identity of the to-be-remembered item, one to store the item's position 
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within the list, and one to store some tag that identifies the trial on which that list occurred. 

Retrieval of a chunk is based on its total activation level. This level is the sum of the chunk's 

base-level activation (i.e., activation level based on its history of being accessed) and the total 

amount of source activation it receives from elements currently in the goal, or focus of attention. 

Total chunk activation is given by: 

■A W 
A^Bi + l-s, 

7=1 n Equation 1 

where Aj is the total activation of chunk i and Bj is the base-level activation of chunk i. W, of 

course, is source activation and it is divided equally among the n filled slots in the goal chunk. 

The Sjis are the strengths of association between chunks j and i. For example, when the current 

goal is to recall the item in the first position of the current trial's list, the chunk in Figure 1 

receives source activation from "first" and "current" in the goal making this chunk more activate 

than if it were not related to the current goal. 

The total activation of a chunk determines the probability of its retrieval as given by the 

following: 

Probability of retrieving chunk i =        _(A._r)/, Equation 2 

where Ai is, as before, the total activation of chunk i, x is the retrieval threshold, and s is a 

measure of the noise level affecting chunk activations. 

If a chunk's total activation (with noise) is above the threshold T, its latency of retrieval 

as given by the following: 

Latency to retrieve chunk i = J?g J ■' Equation 3 

where F and f are constants mapping Ai onto latency. If the total activation falls below threshold, 

the model commits an error of omission. Errors of commission are produced by a partial 

matching mechanism that will be discussed later. 
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To review, the critical insight offered by Anderson et al. (1996) is that the performance of 

this model is limited by a fixed amount of source activation, W. A default value of 1.0 for W was 

adopted by Anderson et al. as a scale assumption. As discussed above, however, this model does 

not account for individual differences in working memory capacity. Extending this framework, 

Lovett et al. (1999) hypothesized that individual differences in working memory capacity could 

be represented by different values for W. To capture individual differences, W is not fixed at 1.0 

(as in Anderson et al.) but rather varies to represent the particular amount of source activation for 

each individual. The distribution of these W values across a population would be expected to 

follow a normal distribution centered at 1.0. 

Putting these equations together, one can see how performance is influenced by the value 

of a particular individual's W. The higher W, the higher a chunk's total activation (Equation 1), 

especially relative to chunks not related to the goal (S/s = 0). This activation in turn impacts the 

probability and speed of a successful retrieval of goal-relevant information (Equations 2 and 3). 

Hence, the model predicts that an individual with a larger value of W will be able to retrieve goal- 

relevant information more accurately and more quickly than will an individual with a smaller 

value of W. Indeed, such accuracy and speed advantages not only affect the subject's final overt 

performance but can produce additional, indirect benefits as well. For example, when W is larger, 

the rehearsal of each item in a memory list will more likely succeed (i.e., strengthen the correct 

item) and will complete in a shorter period of time. This means that in speeded tasks requiring 

rehearsal, more rehearsals can be accomplished in the limited time when W is larger, producing 

even greater subsequent recall. 

It should be emphasized that differences in W reflect differences in a particular kind of 

attentional activation, spreading from the filled slots in the goal, not in total activation per se. 

Although individual differences in the amount of source activation, W, can result in differences in 

total activation of the system, the important influence of W is on the ability to differentially 

activate goal-relevant information relative to non-goal-relevant information. Thus, the larger W, 
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the better this ability, and the more likely goal-relevant chunks will be correctly retrieved. 

Moreover, this relationship between W and performance is complex (e.g., W influences not only 

performance effects but also various indirect learning effects such as the rehearsal effect just 

mentioned) and nonlinear (e.g., a small change in W in Equation 1 affects Ai which, in turn, has 

an exponential effect on latency in Equation 3). Nevertheless, with computational modeling 

techniques it is possible to estimate an individual's W from measures of performance, provided 

the measures meet the criteria discussed in the next section. 

Challenges of This Approach 

There are some practical difficulties that must be addressed before applying a 

computational modeling approach to estimate individuals' working memory capacities. The main 

challenge is finding a task that emphasizes individual differences in working memory and reduces 

the impact of other individual differences on performance. Performance on cognitive tasks is 

affected by a number of factors besides working memory capacity. These include prior 

knowledge of relevant procedures and strategies and possession of related facts. Traditionally, 

working memory capacity has been measured using simple span tasks in which subjects attempt 

to recall ever-lengthening strings of simple stimuli (e.g., letters or digits) until recall fails. The use 

of compensatory strategies, however, has been shown to contaminate measures of working 

memory capacity derived from simple span tasks (Turner & Engle, 1989). A further concern in 

estimating working memory capacity is the influence of different individuals' task-specific 

knowledge on their performance. To cite an extreme case, Chase and Ericsson (1982) described a 

subject with a digit span of more than 80 digits (compared to a normal span of approximately 7 

items). This feat was accomplished in part because the subject, a runner, was able after extensive 

practice to recode the digits into groups based on personally meaningful running times. Thus, 

knowledge of relevant procedures and related facts enabled Chase and Ericsson's subject to 

overcome normal working memory limitations. To obtain valid measures of working memory 
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capacity, then, requires a task that can be completed in only one way and is equally unfamiliar to 

all the subjects. 

To avoid the difficulties of traditional span tasks, Lovett et al. (1999) developed a 

modified digit span (MODS) task. The task is a variant of the task developed by Oakhill and her 

colleagues (e.g., Yuill, Oakhill & Parkin, 1989). In each trial of the MODS task, subjects are 

presented strings of digits to be read aloud in synchrony with a metronome beat and are required 

to remember the final digit from each string for later recall. Specifically, a set of boxes appears on 

the screen indicating the length of the digit strings for the current trial. Each digit appears one at a 

time on the screen, in the box corresponding to its position in the string. Thus, subjects know to 

store and maintain the current digit when it appears in the rightmost box. After a certain number 

of digit strings are thus presented, a recall prompt cues the subject to report the memory digits in 

the order they were presented. 

This task is similar to the reading span task (Daneman & Carpenter, 1980), in which 

subjects read a set of sentences and maintain the sentence-final words for later recall, and the 

operation span task (Turner & Engle, 1989), in which subjects solve arithmetic expressions paired 

with words and maintain the words for later recall. For current purposes, however, the MODS 

task has several advantages. First, it reduces knowledge-based individual differences because the 

procedures required for this task are equally familiar to subjects in our sample (potentially more 

so than reading complex sentences or solving arithmetic expressions). Second, it carefully directs 

the pacing of subjects' processing so as to reduce variability among subjects in choosing their 

own articulation rates. And third, by virtue of the speed of its pacing, the MODS task requires 

virtually continual articulation, which serves to restrict subvocal rehearsal (Baddeley, 1986, 1990) 

or at least minimize the use of different rehearsal strategies. Finally, the inclusion of filler items 

increases the delay before recall, adding to the working memory demands of the task. 
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Lovett et al.'s Model Fitting 

To facilitate measurement of individual subjects' sensitivity to varying working memory 

load, Lovett et al. (1999) manipulated the difficulty of the task in several ways. First, they varied 

the number of digits (3,4,5, or 6) to be recalled on each trial. They also varied the number of 

digits to be read per string (4 or 6) and the inter-digit presentation rate (0.5 s or 0.7 s). Each 

subject completed 4 trials in each of the 16 possible combinations of these conditions for a total 

of 64 trials. 

Lovett, et al (1999) developed an ACT-R model of this task and found that the model's 

aggregate predictions, based on the default values for W and other parameters, compared quite 

favorably with subjects' actual recall accuracy. It should be emphasized that the initial fit they 

obtained was not based on optimized parameters, yet it nicely captured the main trends in the 

data. This basic model did not, however, match the exact quantitative results for each condition. 

In addition, the standard error bars for the model's predictions were consistently smaller than the 

error bars for the subject data. To address these deficiencies they then incorporated individual 

differences into their model as discussed above. 

Because the hypothesis is that W varies across individuals, they allowed W to vary 

randomly across the 22 simulation runs (each run represented one subject) but left all other 

parameters at their previous values. This addition of variability to the parameter W, intended to 

simulate the variability among subjects, resulted in a much better fit between predicted and actual 

recall performance. Specifically, when the model was adjusted to include individual differences 

in W, its aggregate predictions were closer to the actual data points and its error bars more closely 

approximated those of the subjects. It should be emphasized that this improved fit was achieved 

without making any changes to the basic model; rather, it was the addition of variability to one of 

the model's parameters that improved both the overall prediction (goodness of fit) and the 

variability of prediction (relative error bar size). Further, by selecting a specific value of W for 
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each individual, Lovett et al. obtained excellent fits to the data of individual subjects who 

completed multiple sessions. 

In the remainder of this paper, we report the results of three experiments designed to 

replicate and extend the work of Lovett et al. (1999). More important than these empirical results, 

per se, we demonstrate that our model—by varying only the amount of source activation W—can 

successfully account for the systematic differences among individuals in their performance of a 

working memory task. Furthermore, we show that the model captures these individual subjects' 

performance at a finer level of detail than has been achieved previously. Finally, we use 

predictions of performance from the MODS task to predict performance on a second, 

qualitatively different task. 

Experiment 1 

The primary motivation for Experiment 1 was to test the limits of our model of the 

MODS task. Lovett et al. (1999) were successful in modeling subjects' overall performance, but 

we wished to determine whether the model could capture more of the details of individual 

subjects' performance, again with only a single parameter to capture individual differences. One 

aspect of performance that is often examined in memory tasks is accuracy of recall as a function 

of serial position within the memory set. Serial position functions are typically bowed, with better 

recall for items at the beginning of the list (the primacy effect) and for items at the end of the list 

(the recency effect). We hoped that accurate predictions of individual subjects' serial position 

curves would follow from the functioning of the model. 

A secondary motivation for Experiment 1 was to further refine the Lovett et al. (1999) 

version of the MODS task. In their study, all the stimuli, both filler and to-be-remembered items, 

were digits. While this version of the MODS task addresses several concerns about traditional 

span tasks (e.g., variable strategy use, opportunities to rehearse), the use of all digits may have led 

subjects to experience interference effects from the filler items that were not captured by the 

model. To minimize such interference and hence maximize the similarity of the task 
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representation by the subjects and the model, the current studies used letters for filler items and 

digits for to-be-remembered items. 

Method 

Subjects. The 22 subjects in Experiment 1 were recruited from the Psychology 

Department Subject Pool at Carnegie Mellon University. Subjects received credit for their 

participation that partially fulfilled a class requirement. 

Materials and Design. On each trial subjects were required to read aloud 3,4, 5, or 6 

strings consisting of letters in all positions except the last position, which contained a digit. The 

task was, therefore, to recall memory sets of 3,4,5, or 6 digits. In addition to this memory set 

size variable, there were 2 values of string length; strings were either short (2 or 3 letters per 

string) or long (4 or 5 letters per string)1. These variables were crossed yielding 8 separate within- 

subjects treatment conditions. Subjects completed 8 trials in each condition for a total of 64 

experimental trials. Three practice trials preceded the experimental trials for a total of 67 trials per 

subject. Strings were constructed of the letters a through j and the digits 0 through 9. No letter 

repeated within a string and no digit repeated within a trial. A single random ordering of the 

stimuli and conditions was generated and used for all subjects to minimize differences among 

subjects induced by stimulus order. 

Procedure. Subjects were first presented computerized task instructions that included 

practice at the reading task. The experimenter then reiterated those instructions and emphasized 

both speed and accuracy in responding. A trial began with a READY prompt displayed in the 

center of the computer screen. When ready, subjects pressed a key to initiate presentation of the 

stimuli. The strings were presented at a rate of 1 every 0.92 s for the letters and 0.91 s for the 

digits. Subjects were required to name each character aloud as it appeared. To help pace subjects' 

articulation, a click sounded after the presentation of each character and subjects were instructed 

to name each character aloud in time with the click. As shown in Figure 2, all of the characters in 

a given string appeared in a single location on the screen with each new character replacing the 
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one before it. Characters in the first string appeared in the leftmost position and display of the 

following strings each moved one position toward the right. Recall that the digit at the end of 

each string (position) was to be stored in the memory set. After presentation of the final string, a 

recall prompt appeared on the screen along with one underscore for each digit in the memory set. 

The underscores appeared in the same locations as their respective strings. Subjects recalled by 

typing in digits on the computer keyboard and were required to recall the digits in order, with no 

backtracking allowed. Subjects could, though, skip digits that they could not remember. 

Following recall, subjects were given feedback about the accuracy of their response: "perfect" if 

they recalled all the digits correctly, "very good" for recall of more than 3 of the digits, "good" 

for recall of 3, and "OK" if they recalled fewer than 3 of the digits. Following the feedback, the 

ready prompt for the next trial appeared. 

Results 

Empirical Results. For our overall measure of subject performance, we used a strict 

scoring criterion: For an answer to be correct, all of the digits in the memory set had to be 

recalled in their correct serial position. Using proportion of memory sets completely correct as the 

dependent measure, subject performance as a function of memory set size is shown in panel A of 

Figure 3. For all inferential tests reported in this paper, a was set at .05. The effect of memory set 

size was significant, F (3, 63) = 90.80, p = .0001, MSE = .0260. Subjects recalled fewer sets 

completely correct as the size of the memory set increased. The effect of string length was also 

statistically significant, F (1,21) = 4.84, p = .0391, MSE = .0124. Subjects tended to recall the 

digits better when they read short sequences of letters than when they read longer sequences of 

letters. Because the effect of string length was small (.72 for short strings and .69 for long 

strings), we elected to collapse over that factor in our modeling and presentation of figures. The 

interaction of memory set size and string length was not significant, F (3,63) = 2.15, p = .1032, 

MSE = .0133. These effects are consistent with the view that we manipulated working memory 

load. 
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We also examined subjects' performance by memory set size and serial position within 

the memory set. These data are shown in panel B of Figure 3. There are several interesting points 

about these data. First, performance on the smaller set sizes is near ceiling. Further, the serial 

position curves for the larger set sizes, where performance is not on the ceiling, show a 

pronounced primacy effect. This finding can be taken as evidence that subjects were rehearsing; 

typically a lack of rehearsal eliminates the primacy effect (e.g., Glanzer & Cunitz, 1966, 

Glenberg et al., 1980). Finally, the serial position functions for the larger set sizes also show the 

expected recency effect. 

Model fits. Our model of the MODS task is a slight variation of the one developed by 

Lovett et al (1999)3. The critical productions are shown in Table 1. Corresponding to the two 

parts of the MODS task, there are two goals in this model: a goal to articulate each character as it 

appears and a goal to recall the digits from the current trial. The articulate goal contains slots to 

hold the character currently in vision, an index to the current trial, the position of an item within 

the list, and a status flag. The recall goal has slots indexing the current trial, the list position to 

recall, and the identity of the character to recall. We now show the sequence of production firings 

that occur as a single character, the final to-be-remembered digit of a list, is presented. As we will 

show below, the items in each slot of the current goal are the sources of source activation that 

flows to related chunks in memory. 

At the beginning of a trial, the goal is set to articulate. The trial slot is filled with the 

current trial number and the vision slot with the character to be presented. At this point, these two 

components of the goal each possess half the total amount of source activation (or W). Source 

activation will spread from each of these items to any related chunks in declarative memory. The 

amount of source activation spread to each related chunk is governed by the strength of 

association between the two chunks (the s/s in Equation 1). The read-aloud production fires to 

read the character in vision. Because this production requires only a single retrieval (the chunk for 

the number to be read) and source activation is only shared among two goal slots, articulation 
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occurs quickly and seldom, if ever, fails regardless of the value of W. The production then sets 

the status flag to indicate that articulation has been completed. 

Because this character is a digit (as opposed to a letter, which would not need to be 

stored), the create-memory production fires next to create a memory chunk representing that digit 

in the appropriate position within the current trial (see Figure 1). At this point in the sequence 4 

goal slots are filled: the trial number, the character in vision, the position of the item in the list, 

and the status flag. Source activation is divided evenly among these 4 slots and spreads to chunks 

related to those items. The last action of this production is to alter the status flag to indicate that 

rehearsal can now occur. 

If sufficient time remains before the next character appears, then the rehearse-memory 

production fires in order to begin rehearsing the list (note that this only occurs at the end of a 

string). It attempts to rehearse each stored memory chunk individually, starting from the first 

position. The effects of W here are important. Three goal slots are filled, including the trial and 

position slots. Two retrievals are required: the position chunk and the memory chunk for the item 

in the current position on the current list. Source activation spreads from the trial and position 

slots in the goal to any memory chunks that have the same values in their trial and position slots. 

Because the correct chunk matches on both of those values, it receives a larger activation boost 

than other chunks, making it more likely to be retrieved. Moreover, this boost relative to the rest 

of declarative memory is larger the larger W. The governing factors for the success of the 

rehearsal process are the activations of the memory chunks and the time remaining after the digit 

has been articulated and stored. If the total activation of the correct item does not reach threshold 

(which could occur if the base-level activation has decayed significantly or if W is spread to 

many items) or if the time available for rehearsal is exceeded, rehearsal will fail. 

Because this item is the last digit of the last string, after rehearsal the focus of attention is 

shifted to recall. The trial slot is filled with the current trial number; the other two slots are nil. 
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Under these conditions, the parse-screen production fires to simulate subjects encoding this 

change in task and sets the position slot to first. 

The recall goal now has two slots filled: the trial and position slots. Each receives half of 

the source activation and spreads it to related chunks (e.g., any memory chunk with the correct 

value in either its trial or position slot). This production requires retrieval of a chunk on the 

current trial in the correct position. If this retrieval is successful, the item slot is filled with the 

identity of the to-be-recall digit and the read-item production "types" the recalled item. Otherwise 

the no-recall production fires and "recalls" a blank. The model then attempts to recall the next 

position in the list. 

We fit this model to the aggregate data shown in Figure 3. Thus, there were 22 data 

points to be fit; 4 for the accuracy data shown in panel A and 18 serial position points (i.e., 3 for 

memory set size 3,4 for memory set size 4, etc.) from panel B. For our model fitting, most of 

ACT-R's global parameters were left at their default values (see Anderson & Lebiere, 1998). 

Activation noise (the s in Equation 2), which has no default value in ACT-R, Was set at the 

arbitrary value of 0.04. The action time for the parse-screen production was set at 1.57 seconds . 

Both the retrieval threshold (x in Equation 2) and the mismatch penalty (described below) were 

estimated to optimize the fit to the data. The values of these parameters were 0.93 and 3.08, 

respectively. 

The mismatch penalty parameter is part of ACT-R's partial matching mechanism. This 

mechanism allows the retrieval of a chunk that only partially matches the current production 

pattern, thus producing errors of commission. The higher the mismatch penalty, the less likely a 

partially matching chunk will be retrieved instead of the target chunk. Specifically, each chunk i 

that partially matches the current retrieval specifications, or production pattern, p competes for 

retrieval not based on its total activation Aj but rather based on an adjusted activation value called 

the match score MiP. That is, when the partial matching mechanism is enabled, MjP substitutes for 
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As in Equations 2 and 3 above, influencing probability and latency of retrieving chunks that do 

not exactly match the target chunk pattern. MiP is computed as: 

Mi, = A, " MP(1 - simiP> Equation 4 

where Aj is the activation of chunk i, ME is the mismatch penalty parameter (which we estimate), 

and simip is the similarity between the chunk i to be retrieved and the production pattern p. Thus, 

Equation 4 implies that the more similar a given chunk is to the target chunk (with similarity of 1 

signaling an exact match), the higher its match score and hence, all else being equal, the more 

likely it is to be retrieved. This bias toward retrieving closely matching chunks is especially 

strong when the mismatch penalty is large, because ME accentuates any lack of similarity to the 

target chunk. However, if a partially matching chunk happens to have a high level of total 

activation Aj or if noise in the system makes it appear so, it is possible for that chunk to be 

retrieved in place of one that matches exactly. 

Given the positional representation of memory chunks in the current model, we define 

these chunks as more or less similar based on their relative positions. Chunks for adjacent 

positions (e.g., first and second) are more similar than chunks for distant positions (e.g., first and 

fifth) with the degree of similarity, simip, falling off exponentially as positions are more remote 

from one another. This similarity metric was adopted from prior work within the ACT-R 

framework (see Anderson & Lebiere, 1998). 

Panel A of Figure 3 shows the model's fit to the strict accuracy measure. The model's 

predictions are averaged over 30 simulation runs. Each run had a different value of W randomly 

drawn from a normal distribution with mean 1.0 and variance 0.0625. Thus we have incorporated 

variation in this fit of the model, but that variation is not tailored to the individual differences 

among subjects. The serial position data and the model's fit to those data are shown in panel B of 

Figure 3. These fits are certainly acceptable given that the model was not specifically designed to 

produce them. Examination of panel B of Figure 3 shows that the model tends to overpredict the 
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magnitude of the primacy effect. This may be due, in part, to the parameters of the model 

attempting to compensate for the subjects' use of rehearsal strategies that the model did not have. 

We will come back to this issue of rehearsal in the Discussion section. 

The real question, though, is whether we can model data from individual subjects using 

W as the only free parameter. Overall accuracy for four typical subjects is shown as a function of 

memory set size, along with the corresponding model fits, in Figure 4. To obtain these fits, we 

held all of the model's parameters constant at the values described above except for W, which we 

varied to capture each individual subject's data. There were, therefore, 24 parameters (2 global 

parameters and 22 individual W's) used to fit 88 data points (4 data points for each of the 22 

subjects). As expected, the fits are quite good and strongly support our claim that variations in W 

can model variations in subjects' performance of a working memory task. Across all the subjects, 

the best fitting line was observed = 0.97-predicted + 0.04, R2 = .88. This value indicates a good 

fit, but there is still a certain amount of variance not predicted by the model. As a comparison, 

leaving W at the ACT-R default of 1.0 for each subject decreased the quality of the fit; the best- 

fitting line in this case was observed = 0.93-predicted + 0.06, R = .57. 

We were also interested in the model's ability to predict individual subjects' serial 

position curves. Serial position data for the same four subjects are shown in Figure 5. For 

simplicity, only data for the largest memory set size is shown. This analysis used no new 

parameters; these fits used the W's estimated in the prior analysis. The best fitting line across all 

subjects' serial position curves (22 subjects with 18 positions for each or 396 data points) is 

observed = 0.68-predicted + 0.25, R2 = .51. These fits are good, but not as good as we initially 

expected. This is a point taken up in the Discussion section. As in the case of overall accuracy for 

each set size, assuming a W of 1.0 for each subject reduced the quality of the fit. The best-fitting 

line with the default W for each subject was observed = 0.64-predicted + 0.28, R2 = .30. 
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Discussion 

We had several goals in Experiment 1. We wanted to test our conceptualization of 

working memory capacity in a refined version of the MODS task. In particular we asked: Would 

varying source activation in our model enable it to match not only the aggregate results but the 

performance of individual subjects as well? We also wanted to extend earlier work within this 

framework by modeling performance at a more detailed level than had been done previously (i.e., 

fitting serial position curve data). 

We found that our model was able to capture the aggregate performance data from the 

MODS task quite well. With its limitation to source activation, the model—like subjects— 

showed worse performance as memory load increased. Further, the model was able to capture the 

primacy and recency effects observed in the aggregate serial position curves, although not 

perfectly. More important than these aggregate fits, however, we found that varying a single 

parameter W allowed the model to capture individual differences in subjects' performance of the 

MODS task. It should be noted that the model's fit to individual subject's accuracy data was quite 

good in that it captured subjects' different shapes of the performance curve as a function of 

memory set size. Thus our model captures one of the principle findings in the working memory 

literature: people are differentially sensitive to increases in memory load. 

The model's fit to the individual subjects' serial position functions, however, was not 

quite as good as we had anticipated. As we stated earlier, fitting a model to individual subject 

data at this level of detail (i.e., 18 data points per subject) requires a strong alignment between the 

model's processing and each subject's. Thus, finding sub-par fits for the individuals' serial 

position curves led us to re-evaluate how well we had achieved this alignment. One of the 

empirical results from this experiment is relevant: A quite pronounced primacy effect in the serial 

position curves (especially for large memory sets) indicated that subjects were able to do 

substantial rehearsing. Moreover, by referring to subjects' post-experimental reports, we found 

that many subjects in this experimen.t used quite sophisticated rehearsal strategies (e.g., relating 
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pairs of digits to friends' ages, relating digit triplets to area codes or local phone exchanges, etc.). 

The prevalence of these sophisticated strategies did not match our expectations and, more 

importantly, it does not match the model's processing. While our model included rehearsal, it 

only used a simple "run-through" of the individual memory elements at the end of each string; it 

was not endowed with a capability for storing digits in terms of familiar groups or generating 

elaborations. Thus, with subjects developing sophisticated rehearsal strategies relative to the 

model's, it is not surprising that there was some discrepancy between the subjects' performance 

and the model's predictions—different types of processing were being used. But, why did this 

difference arise? Our goal had been to minimize subjects' ability to involve prior knowledge. 

After checking the experimental protocol and equipment, we determined that subjects' 

ability to develop and use such elaborate strategies was most likely due to the fact that the 

computers used in the current experiment produced an unintendedly long inter-item delay. 

Specifically, we found that the computers were slow in loading and playing the sound file used to 

pace subjects' articulation. As a result, our nominal 0.5 s inter-stimulüs interval was inadvertently 

lengthened to 0.9 s. Thus, subjects had sufficient time to execute their rehearsal strategies and 

probably benefited greatly from it. In contrast, the model was constrained to use this same (long) 

inter-stimulus interval to execute a much simpler (and probably less effective) rehearsal strategy. 

When we fit the model to the data, however, the global parameters ME and T were allowed to 

vary to get our model's aggregate predictions close to the subjects' data. It is quite possible that 

these parameters' values helped the model compensate for its simpler rehearsal strategy so it 

would predict performance at a level commensurate with subjects'. It also helps explain why the 

model tended to overpredict the magnitude of the primacy effect in subjects' serial position 

curves. 

This is not to say, however, that modeling sophisticated rehearsal strategies is impossible 

in the current framework (cf. Anderson & Matessa, 1997). Rather, given that our focus is on 

individual differences in working memory capacity, rather than in strategies, we took a different 
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tack: simply correct the timing issue and verify that when subjects are only able to use a simple 

rehearsal strategy (consistent with the model's), the fits to the serial position data will be better. 

This was one of the main goals for Experiment 2. 

Experiment 2 

Experiment 2 was designed to control the ability of subjects to engage in idiosyncratic 

rehearsal strategies by holding the presentation rate at the desired value of 1 character every 0.5 s. 

This should reduce the use of rehearsal and thereby improve the predictive power of our model, 

which assumes only a simplified rehearsal routine. 

Method 

Subjects. For Experiment 2 we recruited 29 subjects from the Psychology Department 

Subject Pool at Carnegie Mellon University. Because we expected, based on prior work (Reder & 

Schunn, 1999; Schunn & Reder, 1998) that W would be correlated with scores on the CAM 

inductive reasoning subtest (Kyllonen, 1993, 1994, 1995) and because we wanted a wide range of 

W values, we recruited individuals based on their CAM scores. Specifically, we tried to recruit 

individuals with both high and low scores5. All subjects received a large candy bar and credit for 

their participation that partially fulfilled a class requirement. 

Procedure. The MODS task used in Experiment 2 was an exact replication of the 

Experiment 1 design, except that the inter-stimulus interval was corrected to 0.5 s. 

Results and Discussion 

Empirical Results. As in Experiment 1, we used a strict scoring criterion for our overall 

measure of subject performance. All of the digits in the memory set had to be recalled in their 

correct serial position for an answer to be correct. Using proportion of memory sets completely 

correct as the dependent measure, subject performance as a function of memory set size 

(collapsed across string length) is shown in panel A of Figure 6. The main effect of memory set 

size was significant, F (3,72) = 189.89, E = .0001, MSE = .0261. Subjects recalled fewer sets 

completely correct as the size of the memory set increased. The effect of string length, however, 
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was not statistically significant, F (1, 24) = 1.07, p = -3114, MSE = .0164. We take this finding as 

further justification for averaging over this factor in our modeling efforts, as we did in 

Experiment 1. As in Experiment 1, the interaction of memory set size and string length was not 

significant, F (3,72) = 1.74, p = .1661, MSE = .0149. In general, the recall levels in Experiment 2 

are lower than those in Experiment 1, suggesting that we were successful in reducing subjects' 

use of rehearsal. 

The serial position curves for Experiment 2 are shown in panel B of Figure 6. Several 

differences between these curves and those shown in Figure 2 are readily apparent. First, 

performance on the smaller set sizes is pulled away from the ceiling, reflecting the fact that 

subjects in Experiment 2 were unable to rehearse as effectively as in Experiment 1. Second, the 

primacy effects in Experiment 2 are much smaller than those in Experiment 1. This further 

supports the notion that subjects' rehearsal was reduced in Experiment 2. Moreover, subjects in 

Experiment 2 reported being unable to engage in anything other than simple rehearsal, a strategy 

just like the model's. Together, these findings suggest that we were successful in eliminating or 

reducing the use of rehearsal in Experiment 2. 

Model fits. The data from Experiment 2 were fit using the same model used in 

Experiment 1. As before, most of ACT-R's global parameters were left at their default values. 

Activation noise was maintained at the arbitrary value of 0.04 used in our modeling from 

Experiment 1. Three parameters were estimated to optimize the fit to the data. The retrieval 

threshold and the mismatch penalty were estimated to be .19 and 1.87, respectively. The action 

time for the parse-screen production was estimated at 1.57 seconds, and this value was also used 

in Experiment 1. 

Panel A of Figure 6 shows the model's fit to the data, collapsed across the string length 

variable. The model's fit to the serial position data is shown in panel B of Figure 6. These fits are 

somewhat better than the corresponding fits in Experiment 1, most likely due to the greater 
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control over rehearsal in Experiment 2. As before, though, our main interest is in the individual 

subject fits. 

Accuracy as a function of memory set size for 4 representative subjects is shown in 

Figure 7. Also shown are the model's predictions for those subjects. These predictions were 

obtained using 32 parameters (3 global parameters and 29 individual W's) to fit 116 data points 

(4 data points for each of the 29 subjects). The best-fitting line over all subjects is observed = 

1.12-predicted + -0.07, R2 = .92: As with the aggregate data, greater control over strategy use has 

improved the fits somewhat; the corresponding R2 from Experiment 1 was .88. In comparison, if 

W is set to 1.0 for every subject the best-fitting line is observed = 1. IP-predicted + -0.02, R = 

.66. The improvement in R2 is even more dramatic in the fits to individual subjects' serial 

position functions. Examples of the fits to the largest set size data for the same 4 subjects as in 

Figure 7 are shown in Figure 8. These fits required no new parameters; we simply used the W's 

estimated in the prior analysis. Over all subjects and all set sizes the best-fitting line is observed = 

0.87-predicted + 0.08, R2 = .72. In Experiment 1, the corresponding R2 was only .51. It appears, 

then, that we were successful in controlling the use of strategies by our subjects and that this 

greater control has improved the predictive power of our model. Again, assuming a W of 1.0 for 

every subject reduces the quality of the fits compared to adopting individual W's; the best-fitting 

line is observed = 0.92-predicted + 0.09, R2 = .57. 

Alternative Accounts of Working Memory 

While we have presented evidence that supports our conceptualization of working 

memory as source activation, there are other accounts of working memory that could be devised 

within the ACT-R framework. That is, there are other continuously valued parameters in ACT-R 

that modulate performance and that, conceivably, could capture individual differences in working 

memory capacity. In this subsection we explore two plausible candidates. 

One possibility is that subjects differ, not in their amount of source activation, but in the 

rate at which the activation of individual chunks decays. This view is consistent with Baddeley's 
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(1986) working memory model in which the capacity of the articulatory loop is limited by the rate 

of decay. Because the probability and latency of retrieval are dependent on activation (Equations 

2 and 3), if two individuals differ in how quickly activation decays, they will also differ in the 

speed and accuracy of their retrieval after similar retention intervals (as in the MODS task). Items 

with fast-decaying activations can be maintained via rehearsal, but if an individual's decay rate is 

fast enough, it is possible that activation levels will decay below threshold before the opportunity 

to rehearse occurs. When this is the case, performance will be seriously degraded. 

In ACT-R, the decay rate affects activation through a chunk's base-level activation. 

Recall from Equation 1 that base-level activation is added to source activation to determine a 

chunk's total activation. The base-level activation of chunk i, the Bj in Equation 1, is given here 

in more detail by: 

n 

Bi = MZjtj )+ß Equation 5 

where ß is the chunk's initial base-level activation. In most ACT-R simulations, including ours, ß 

is set to 0. The t/s measure the time lag between the present and each of the n past encounters 

with the chunk. Thus, base-level activation depends on the sum of these individually decaying 

activation bursts, with each burst occurring with a single access of the chunk. The parameter d is 

the decay rate. It is usually set at 0.5 in ACT-R simulations, but it is conceivable that individuals 

could differ in their decay rates. That is the hypothesis we wish to test as an alternative to our 

source activation hypothesis. 

To test whether differences in decay rate could predict individual subjects' performance 

on the MODS task, we adopted a method analogous to that by which we tested W. We held all 

global parameters except d constant at the optimal values obtained by fitting the aggregate data 

and allowed d to vary around the default value of 0.5. We then estimated the best-fitting value of 

d for each subject. Across all subjects and all memory set sizes, the best-fitting line for the 

proportion of strings correctly recalled was observed = 1.23-predicted + -0.07, R = .85. The R" 
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value for our W-varying model was .92. Though the difference in R2 is in favor of the W-varying 

model, the difference is small and not very compelling. However, Figure 9, which presents serial 

position data from the largest set size for 4 subjects6, shows that the d-varying model cannot 

capture the individual subjects' serial position functions well. The best-fitting line is observed = 

,56-predicted + .23, R2 = .23. The corresponding value for our W-varying model is .72. The 

difference in the fits is largely due to the fact that the serial position curves with d varying tend to 

be the wrong shape. For values of d below the default value of 0.5, recall performance is near 

ceiling: The activations of chunks simply do not drop below threshold. As d increases from the 

default, the model predicts worse recall for the items at the beginning and end of the list. The first 

items are poorly recalled because they must endure the longest retention interval (i.e., they are 

stored first and must be maintained while the remaining strings are presented). With this long 

time lag until recall, a high decay rate causes the first items' activations to drop below threshold, 

and the model fails to retrieve these items. The final list item, however, has the shortest retention 

interval and hence a very high level of activation at recall. If all retrievals identified the exact 

chunk being sought (i.e., the fifth memory item for the fifth recall position), this would imply a 

large recency effect. However, the model's partial matching mechanism allows it to incorrectly 

retrieve a memory item from the wrong position in the list when the item's adjusted activation is 

high enough (see Equation 4). Because this is true for the final item, it tends to be erroneously 

recalled in place of earlier items. Once the final item is recalled for an earlier position in the list, 

it is "ineligible" for recall again in its proper position making correct recall of the final digit 

extremely low. Because this pattern of retrieval across positions does not match the data, we 

conclude that individual differences in decay rate do not account for differences in performance 

on the MODS task. 

Another plausible account of performance differences is that different subjects could 

adopt different retrieval thresholds. A conservative subject with a high threshold would display 

lower overall accuracy than would a subject with a more lenient, lower retrieval threshold. To test 
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this account within the ACT-R framework, we again varied only the parameter of interest, the 

retrieval threshold, around the value of .19, which was obtained from fitting the model to the 

aggregate data. All other parameters were fixed at the optimal values. For the proportion of 

strings correctly recalled as a function of memory set size, the best-fitting line is observed = 

1.13-predicted + -.0002, R2 = .90. This value is only slightly less than the R2 of .92 for W, and the 

difference is again not very convincing. For a more discriminating test of the model's ability to fit 

individual subjects by varying its retrieval threshold, we look to the serial position data. Figure 10 

presents the serial position data for 4 representative subjects. The best-fitting line for these data is 

observed = ,64-predicted + .21, R2 = .35. The corresponding R2 for the W-varying model is .72, 

indicating that the W-varying model captures much more of the variability in the data. As was the 

case when the decay rate was varied, changing the retrieval threshold results in behavior that does 

not match the pattern of subjects' behavior. Lowering the threshold allows for more retrievals, but 

many of these are retrievals of incorrect chunks, resulting in a serial position curve that is low on 

the ends and high in the middle. In contrast, raising the threshold results in recall of only highly 

activated items. These tend to be the first and last items, the first because its activation likely 

received a boost from rehearsal and the last because its activation has not yet decayed. It seems 

reasonable, therefore, to conclude that, among the alternatives considered, conceiving of working 

memory capacity as the amount of source activation (the W parameter) provides the best account 

of the data. 

Experiment 3 

In Experiments 1 and 2, we showed that our working memory model's single individual 

difference parameter can capture individual subjects' patterns of performance in the MODS task. 

In Experiment 3, we demonstrate that estimates of W derived from individual subjects' 

performance on the MODS task lead to accurate predictions of their individual performance on a 

second working memory task (with all other parameters held constant). This adds to the support 

for W as a measure of working memory capacity and offers the first demonstration of modeling 
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individual differences with a single free parameter within the first task and no free parameters in 

the second task. 

The second task we chose for this cross-task prediction of individuals' performance is the 

n-back task (e.g., Braver et al., 1997; Cohen et al, 1994; Gevins, et al., 1996; Gevins, Smith, 

McEvoy, & Yu, 1997). In this task, subjects are presented with a long sequence of letters and are 

required to indicate whether the current letter matches some previous letter in the sequence. For 

instance, in a 1-back condition, the subject is told to respond positively when the current letter 

matches the immediately preceding letter in the sequence. In a 2-back condition, the subject is 

told to respond positively when the current letter matches the second letter before the current one, 

etc. Thus, as the number of items "back" increases, the subject must keep track of a greater 

number of items in order to respond accurately. In addition, a 0-back condition is often included 

in which subjects must indicate whether the current letter matches a fixed letter. The usual finding 

in the n-back task is that response latency increases and accuracy decreases as memory load (i.e., 

the value of "n") increases (Braver et al., 1997; Cohen et al, 1994). 

Note that the n-back task is qualitatively different from the MODS task in several 

respects. Unlike the MODS task, which requires recall of the memory set items, the n-back task 

involves recognition of previously presented items. Further, successful performance of the n-back 

task requires continual updating of a stream of to-be-remembered items whereas the MODS task 

involves maintenance of a separate list of to-be-remembered items for each trial. Finally, the 

memory load involved in the n-back (three items at most) is somewhat smaller than the load in 

the MODS task (varies from 3 to 6 items). Given these differences, if our working memory model 

can make cross-task predictions based on a single individual difference parameter it would 

suggest that there is something general about the impact of source activation (W) on performance. 

Method 

Subjects. The 20 subjects in Experiment 3 were recruited from the Psychology 

Department Subject Pool at Carnegie Mellon University. Subjects received credit for their 



Working Memory      33 

participation that partially fulfilled a class requirement. 

.   Materials and Design. Two tasks were used in this experiment: the MODS task as 

described in Experiment 2 and the n-back task. In the n-back task, subjects viewed sequences of 

letters and were required to classify each as a target or non-target. Targets were defined by 

condition: in the zero-back condition a target letter was given at the start of a block of trials. In 

the one-back condition, a letter was a target if it matched the letter that immediately preceded it in 

the sequence (i.e., the letter one back). A letter was a target in the two- and three-back conditions 

if it matched the letter two or three back, respectively. Subjects completed one practice block in 

each condition, starting with zero-back and ending with three-back. They then completed 16 

experimental blocks, 4 blocks of each of the 4 conditions, for a total of 20 blocks. 

Each block consisted of a sequence of 28 letters. The first 4 were designated lead trials 

and targets never occurred in those positions. Of the remaining 24 letters in each block, 8 were 

targets, for a 2:1 ratio of non-targets to targets. Targets were distributed randomly within a block. 

Letters were randomly selected from the 20 consonants. A single random ordering of blocks and 

stimuli was generated and used for all subjects to reduce differences due to order effects. 

Procedure. Subjects first completed the MODS task as described in Experiment 2. After a 

five minute break, they then completed the n-back task. The n-back task began with 4 practice 

blocks, one for each condition. Each practice block was preceded by instructions that explained 

how targets were defined for that condition. The subjects then completed the 16 experimental 

blocks. 

Each block began with a presentation of the experimental condition (e.g., "2 back letter 

repeats") in the center of the screen. Subjects pressed the spacebar to initiate the trials. On each 

trial, a single letter appeared in the center of the computer screen and the subjects' task was to 

classify it as a target or non-target as quickly as possible. Subjects were instructed to press the 1 

key to classify a letter as a non-target and the 2 key to classify it as a target. Each letter remained 

onscreen for .5 sec, then the screen was cleared. Subjects had 3 seconds from a letter's onset to 
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respond; if they did not the computer advanced to the next letter in the sequence. Auditory 

feedback was provided for each response: a rising sequence of tones for a correct response, a 

descending sequence of tones for an incorrect response, and a quickly alternating sequence of 

high and low tones (a trill) for no response (i.e., the subject failed to respond within 3 sec). 

Results and Discussion 

Empirical Results. Our original assumption was that subjects would not differ in terms of 

prior knowledge relevant to this task nor in the strategy they used for task performance. To test 

these assumptions, we included a questionnaire asking subjects how they performed the n-back 

task. Subjects' responses suggested that they were equally unfamiliar with the task, i.e., subjects 

did not differ in relevant prior knowledge. Contrary to our expectations, however, subjects 

indicated using one of two qualitatively different strategies. In the first, subjects responded to 

each letter based on its familiarity: if the item seemed familiar it was called a match. The second 

strategy involved actively maintaining a list of the prior letters and updating that list after each 

letter was presented. 

We divided the subjects into two groups based on their self-reported strategy and 

compared the performance of the two groups (see Siegler, 1987). Subjects' proportion correct as a 

function of memory load is shown in Figure 11. These data were entered into a 2 (Group) by 4 

(Memory Load) analysis of variance. The effect of group was marginally significant, F(l, 18) = 

2.86, p = .108, MSE = 0.01. The update group tended to be more accurate than the activation 

group. The effect of memory load was significant, F (3,54) = 142.98, p < .001, MSE = 0.18. 

Subjects were less accurate as load increased. Finally, the interaction between group and memory 

load was also significant, F (3, 54) = 2.84, p = .046, MSE = 0.003. While accuracy decreased for 

both groups as load increased, the decrease was smaller for the update group than for the 

activation group. This difference in performance suggests that the differences in the strategies 

adopted by the two groups are not trivial and that the strategies have a real affect on performance. 

Presumably, working memory resources would not be involved in the familiarity strategy 
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as no maintenance is involved. These resources would, however, be required for the maintenance 

and updating of the lists in the update strategy. Consistent with this interpretation we found that 

that there was no relation between W, as estimated from subjects' MODS performance (see 

below), and overall n-back accuracy in the activation group (r = 0.04, p - .92). There was, 

however, a marginally significant relation between W and accuracy among subjects in the update 

group (r = .56, p = . 12). The two groups of subjects did not appear differ in terms of their 

estimated W values—both had a mean of 0.97 with standard deviation 0.09—suggesting that 

subjects' choice of strategy does not relate to working memory capacity. Therefore, we chose to 

model the n-back data from the update group only by developing an ACT-R model to implement 

the update strategy. 

Modeling Results. Individual W estimates were computed from each subject's MODS 

data using our existing model of the MODS task. Specifically, we used the same model and the 

same parameters as in Experiment 2 and merely estimated a new W value for each subject in our 

new sample. Individual MODS data and model fits from four representative subjects, chosen to 

represent a range of W values, are shown in Figure 12. As in Experiment 2, these fits are quite 

good. In addition, we used our MODS model with the same set of individually estimated W 

values to generate predictions of individual subjects' serial position curves. Figure 13 shows the 

data and model predictions for the set size 6 serial position curves for the same subjects as in 

Figure 12. Given the quality of these individual subject fits, we moved on to modeling subjects' 

n-back data. 

As mentioned above, we developed an ACT-R task model for the n-back task that 

included all the declarative artd procedural knowledge necessary for performing this task 

according to the update strategy. In this model, each stored letter was represented as a declarative 

chunk indexed according to how many letters back it was from the current letter. The procedural 

knowledge included a set of rules for reading the letters on the screen, updating the positions of 

the letters currently being maintained, and testing whether the current letter matched the memory 
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for the nth-back letter. 

Figure 14 shows that this ACT-R task model was able to fit the aggregate n-back data 

("update" subjects only). For this fit, most of ACT-R's global parameters were left at their default 

values (see Anderson & Lebiere, 1998). Activation noise (the s in Equation 2), which has no 

default value in ACT-R, was pre-set at the arbitrary value of 0.04 (the same value used in the 

MODS model). Retrieval threshold (T in Equation 2) was the only parameter estimated to 

optimize the fit to the observed data. Its optimal value was 1.80. The fit shown in Figure 14 is 

quite good with R2 = .99. 

The real question, however, was whether the W values estimated for each subject from 

the MODS task would predict those subjects' individual performance data on the n-back task. To 

answer this question, the W value for each subject (estimated from fitting to the MODS task 

model) was simply plugged into the n-back model to obtain predictions ofthat subject's n-back 

performance. That is, no new parameters were estimated to fit these individual subject data. The 

model's predictions for four representative subjects are presented in Figure 15. As with the 

individual subject fits for the MODS task, these fits are quite good. Over all subjects' individual 

data points, the model fit has R2=.79. In contrast, if we fit each subject's data with ACT-R's 

default W of 1.0, the corresponding model fit has a lower R2 value of .68. Moreover, for every 

subject, the MODS-based estimate of W was within 0.05 of the value that it would have been had 

we estimated it directly from the n-back data. 

We want to emphasize that these fits were obtained in a three step process with only one 

free parameter per subject in the first step, one additional global free parameter in the second step, 

and zero free parameters in the third step. For the first step, we used our previously tested model 

of the MODS task to fit the MODS data of our new subjects. The model and its global parameter 

settings were used unchanged; we only estimated one new W value for each new subject. For the 

second step, we fit our new n-back model to the aggregate n-back data. Here, we fixed W at 1.0 

and only estimated one free global parameter, the retrieval threshold. For the third step, we fixed 
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the retrieval threshold at this optimal value and used the n-back model with the MODS-based 

estimates of each subject's W value to generate predictions for each subject's n-back data. 

Specifically, we fit these individual subject data using only parameters that were either set at their 

default values or estimated in a previous step, i.e., zero additional parameters. This procedure 

constitutes a type of generalization test (see Busemeyer & Wang, in press): parameters estimated 

from one task are used to make a priori predictions concerning new experimental conditions, 

providing a test of the model's ability to accurately extrapolate/Including the nine subjects for 

whom we modeled both their MODS and n-back performance, we estimated a total of 10 

parameters to fit a total of 72 data points across two tasks. The quality of the fits obtained here 

add a great deal of support to our theory of working memory and to the ACT-R framework. 

General Discussion 

We have presented a view of working memory capacity in terms of a limitation to source 

activation, a specific kind of activation used to maintain goal-relevant information in an available 

state. This limit to source activation produces the observed degradation in performance as the 

working memory demands of a task increase. More importantly, we have proposed that, holding 

prior knowledge and strategic approaches relatively constant, differences among individuals in 

the performance of working memory tasks can be largely attributed to differences in their amount 

of source activation. Based on this theory, we presented a computational model of individual 

differences in working memory. The model's basic structure is built within the ACT-R cognitive 

architecture (Anderson & Lebiere, 1998). However, we used and tested the model according to a 

new, individual differences approach: Besides testing the model's fit to aggregate working 

memory effects, we focused on whether the model's performance could be parametrically 

modulated to capture the different patterns of working memory effects exhibited by different 

individual subjects. In our first two experiments, we demonstrated that, by varying only the 

source activation parameter W, the model was able to account for individual differences in 

performance of a working memory task. In particular, different values of W enabled the model to 
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Although we do not see a one-to-one mapping between aspects of our model and 

components of the working memory model by O'Reilly et al. (1999), there are several conceptual 

similarities. First, O'Reilly et al. emphasize the role that the current goal plays in modulating the 

propagation of activation. In our model, source activation is the very means by which the current 

goal differentially activates goal-related items; it enables goal-relevant items to be more easily 

processed than non-goal-relevant items. Second, O'Reilly et al. interpret working memory 

limitations in terms of attentional limitations. The same interpretation is natural within our model: 

Source activation is a limited kind of activation that is directed from the goal; in ACT-R, the goal 

represents the system's current focus of attention. So, whatever is currently in the focus of 

attention must share this limited quantity of source activation, i.e., attentional activation is 

limited. Third, O'Reilly et al. allow for the possibility of both domain-general and domain- 

specific sources of variability among individuals, as do we. 

Finally, Engle and his colleagues (Conway & Engle, 1994; Engle et al, 1999) have shown 

that working memory limits only affect performance of tasks requiring controlled processing. 

Differences in working memory capacity do not predict differences in how people perform on 

tasks using automatic processing. Our model is consistent with these findings because an 

individual's W value will only affect processing that requires goal-directed retrieval of 

information. Consider a simple example: that of an individual learning that 3+4=7. At first the 

individual must compute the answer, perhaps using a count-up strategy (Siegler, 1991; Siegler & 

Shrager, 1984). This is a controlled process and requires retrieval of applicable declarative 

chunks for counting. It is, therefore, dependent on W. After practice, the person may acquire a 

chunk encoding the fact that 3+4=7. Performance is now faster, but still dependent on W as a 

retrieval from declarative memory isstill required. With even more practice, giving the sum of 3 

and 4 may become proceduralized: the person will learn a new production of the form IF the goal 

is to provide the sum of 3 and 4 THEN say 7. This constitutes automatic processing and, as no 

declarative retrievals are required, W will not play a role. 
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Other Sources of Individual Differences 

It should be emphasized that our arguments regarding individual differences do not claim 

that source activation, W, is the only thing that explains differences in people's performance on 

laboratory tasks or on everyday tasks. As noted above, individual differences in prior knowledge 

and strategies can significantly influence task performance (Chase & Ericsson, 1982; Ericsson & 

Kintsch, 1995). However, we have argued that when those other sources of variability in task 

performance are reduced, differences in source activation (our model's representation of working 

memory capacity) can largely explain differences in an individual's task performance. In the 

current studies, we used a fast-paced, unfamiliar task to try to reduce sources of variation other 

than source activation. This is especially evident in Experiment 2, in which the inter-stimulus 

interval in the MODS task was 0.5 s. Subjects in that study did not report using sophisticated 

rehearsal strategies. In fact, they appeared to use a common, simple approach to the task, one that 

our model was designed to simulate. These results provide converging evidence that we managed 

to reduce other sources of variation, thereby highlighting the effects of individual differences in 

working memory capacity. 

Other Approaches to Studvine Individual Differences 

As Reder and Schunn (1999; Schunn & Reder, 1998) have noted, two distinct approaches 

to studying individual differences have been employed in the field. One approach focuses on 

differences in knowledge and strategies. Expert-novice studies (e.g., Chi, Glaser, & Rees, 1982; 

Ericsson & Kintsch, 1995; Larkin, 1981) and strategy choice studies (e.g., Lovett & Anderson, 

1996; Lovett & Schunn, 1999; Reder, 1982,1987; Siegler, 1988) fall into this camp. The other, 

more psychometrically oriented approach focuses on how differences in the functioning of basic 

cognitive processes influence performance (e.g., Just & Carpenter, 1992; Salthouse, 1994). Our 

work is an example of this second approach with the additional feature that we used a 

computational model to predict and explain the differences in working memory performance 

among individual subjects. It is interesting to note the similarities and differences between our 
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approach and that developed within psychophysics. For example Nosofsky and Palmeri (1997) 

have done an excellent job modeling 3 individual subjects' data in a perceptual classification task. 

They too fit individual subjects with a computational model. However, their approach differed in 

that they were not interested in holding any parameters constant across subjects, but rather 

allowed all six parameters to vary for each subject. Moreover, they do not interpret their 

estimated parameter values beyond the scope of the specific task they were modeling. 

In contrast our parameter W is intended to represent a stable characteristic of the subjects 

that applies across tasks. Our goal was to limit ourselves to this single subject-specific parameter 

to capture individual differences. Thus, our work also demonstrates that computational models 

can be especially helpful in testing the "individual differences component" of working memory 

models. We believe that studying and modeling systematic individual differences in performance 

are just as important as studying and modeling aggregate effects. For example, looking at 

individual subjects can reveal new patterns of performance that may only be seen as a mixture 

when results are aggregated. A computational model that can reproduce the mixture results but 

not the results of any given individual cannot be said to have fully captured the phenomenon 

under study. Moreover, as we have shown, employing an individual level of analysis in 

combination with computational modeling techniques offers a new way of correlating 

individuals' working memory performance across tasks. 

In the Introduction we summarized three important characteristics of working memory 

resources: (a) they are drawn upon in the performance of cognitive tasks; (b) they are inherently 

limited; and (c) they differ in capacity across individuals. Because our model possesses all of 

these characteristics and captures working memory effects at the aggregate and individual levels, 

both within and across tasks, we believe that it provides a promising account of individual 

differences in working memory capacity. Though previous research has highlighted that 

individual differences exist, these differences have not been modeled at the level of the individual 
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subject. That we were able to do so speaks to the power of our approach and to the generality of 

the ACT-R theory. 
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Footnotes 

1 This may appear to be 4 levels of the string length variable, but, for practical purposes, 

it is not. Certain trials included strings of 2 and 3 letters, and other trials included strings of 4 and 

5 letters. That is, in any single trial, the string length could vary (by one character) from string to 

string. This mixture of string lengths within a trial was designed to prevent subjects from 

anticipating exactly when the to-be-remembered digit would appear and hence from adjusting 

their strategies accordingly. 

To prevent rehearsal, this rate was intended to be 1 character every 0.5 s to match the 

fast condition from Lovett et al. (1999). The computers used in this study, however, took longer 

to load and play the sound file used to pace subject's articulation, resulting in the lengthened 

interval. We were unaware that the timing was different than intended until after the subjects 

were run. As discussed in the Discussion section of Experiment 1, there were behavioral 

indications that the timing was incorrect, a fact that was subsequently confirmed by timing the 

program's execution with an external device. 

3 There were two differences between our model and that of Lovett et al. (1999). First, 

our model begins rehearsal with the first item in the list and works toward the end. The Lovett et 

al. model does the opposite: It begins with the last item in the list and works forward. Thus, 

rehearsal benefits different parts of the list in the two models. We made this change to match our 

model to the self-report of our subjects who reported using the "forward" method of rehearsal. 

The same method of rehearsal is used in Page and Norris's (1998a; 1998b) model of immediate 

serial recall, a task highly similar to our MODS task. The second change was the addition of the 

parse-screen production, which simulates subjects' encoding of the recall prompt. Again, this 

change was made to match the model more closely to the behavior of our subjects. 

We had no data on how long subjects take to switch tasks and so we estimated the 

action time for the parse-screen production as a free parameter in fitting the data from Experiment 

2. We estimate this parameter based on Experiment 2's data (which was fit first) instead of 
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Experiment l's because in the latter experiment the timing of the experimental procedure was 

mistakenly too long. See footnote 1 and the Discussion Section of Experiment 1 for more detail. 

Because there is no reason to believe that it would take more or less time to switch tasks in the 

two experiments, we used the estimate from Experiment 2 here. 

'Although we endeavored to recruit subjects with both high and low scores on the CAM, 

we had great difficulty in contacting low-scoring subjects. They tended not to respond to phone 

and email messages, or did not report to the experimental session after agreeing to participate. 

The authors leave it to others to speculate On a possible link between working memory and 

motivation. 

6 We would have liked to have displayed the same subjects from figure to figure, but 

subjects with different W values often had the same decay rate or retrieval threshold. Thus, in 

certain cases in Figures 5,9, and 10 we decided to substitute in a different subject (with a 

different estimated parameter value) in order to display how performance differed across a range 

of values. 
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Table 1 

Productions for the modified digit span task model 

READ-ALOUD 
IF the goal is to articulate 

and a character is in vision 
and the character has not been articulated 

THEN say the name of the character 
and note that it has been articulated 

CREATE-MEMORY 
IF the goal is to articulate 

and the current character is a digit (i.e., the last character of the string) 
and it has already been articulated 

THEN create a memory of that character in the current position of the current trial 
and increment to the next position 
and set a flag to rehearse the first position 

REHEARSE-MEMORY 
IF the goal is to articulate 

and the current character in vision has been articulated 
and the rehearsal flag is set to rehearse the memory item in a certain position 
and there is a memory of an item in that position 

THEN rehearse the item 
and increment the rehearsal flag to the next position 

PARSE-SCREEN 
IF the goal is to articulate on the current trial 

and there are recall instructions on the screen 
THEN change the goal to recall the first position of the current trial 

RECALL-SPAN 
IF the goal is to recall a position on the current trial 

and there is a memory of an item in that position on this trial 
and the item has not been recalled already 

THEN recall the item 
and increment the recall position to the next position 

NO-RECALL 
IF the goal is to recall 

and there's no memory of an item in the current position 
THEN recall blank 

and increment the recall position to the next position 
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Figure Captions 

Figure 1. The structure of a declarative chunk encoding the fact 7 is the first item of the current 

list. 

Figure 2. Graphic illustration of a trial with a memory set of size 3. The differences in the 

positions of the characters on-screen have been exaggerated for clarity; in actuality the final string 

would appear in the middle of the screen instead of the right side. 

Figure 3. The model's fit to the overall accuracy data from Experiment 1 is shown in panel A. We 

collapsed over the string length variable for these fits. Panel B shows the model's fits to the serial 

position data. 

Figure 4. Proportion of strings correctly recalled as a function of memory set size for four 

representative subjects in Experiment 1. Also shown are the model's predictions for each subject, 

varying only the W parameter. 

Figure 5. Proportion correct as a function of serial position and the corresponding model 

predictions for the largest memory set size only for four representative subjects in Experiment 1, 

varying only the W parameter. 

Figure 6. Panel A shows the model's fit to the overall accuracy data from Experiment 2. We 

collapsed over the string length variable for these fits. Panel B shows the model's fits to the serial 

position data. 

Figure 7. Proportion of strings correctly recalled as a function of memory set size and the model's 

predictions for four representative subjects in Experiment 2, varying only the W parameter. 

Figure 8. Proportion correct as a function of serial position and the corresponding model 

predictions for the largest memory set size only for four representative subjects in Experiment 2, 

again varying only the W parameter. 

Figure 9. Comparison of behavioral data to a model of performance that varies decay rate rather 

than source activation, W. These are the model predictions for the largest memory set size only 

l 
for four representative subjects in Experiment 2. 
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Figure 10. Comparison of behavioral data to a model of performance that varies retrieval 

threshold rather than source activation, W. These are the model predictions for the largest 

memory set size only for four representative subjects in Experiment 2. 

Figure 11. Accuracy in the n-back task as a function of the strategy adopted by subjects. 

Figure 12. Fits of the MODS model to data from 4 representative subjects from Experiment 3. 

Global ACT-R parameters for these fits were set in Experiment 2. 

Figure 13. Individual serial position fits (largest set size only) for the same subjects shown in 

Figure 12. 

Figure 14. Aggregate data and model fit from the n-back task. 

Figure 15. Individual subject fits for the n-back task. W values were estimated from subjects' 

MODS performance. 
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